

HYDAC INTERNATIONAL

Air Cooler Mobile OK-ELD 0-6 with DC motor

Symbol

General

The OK-ELD air cooler series is designed specifically for mobile hydraulic applications where high performance and efficiency are required and physical size must be minimized to allow easy installation.

Product Features

These coolers use a combination of high performance cooling elements and high capacity, long life DC electric powered fans to give long trouble free operation in arduous mobile hydraulic applications.

The compact design allows the coolers to fit most equipment and provide the highest cooling performance in heat dissipation whilst minimizing space required.

- Compact, efficient, high performance
- Cooling range 2-34 kW
- DC motors in 12 Volt and 24 Volt with motor lifetimes up to 16,000 hours

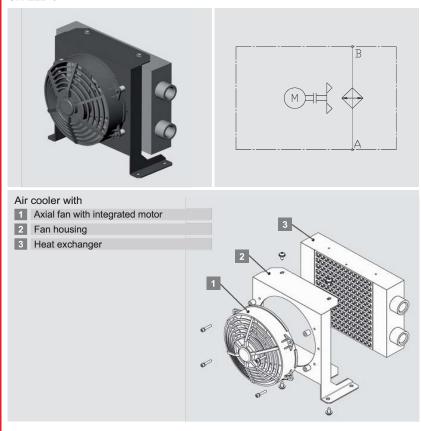
Application Field

Hydraulic systems in mobile machines and vehicles, such as

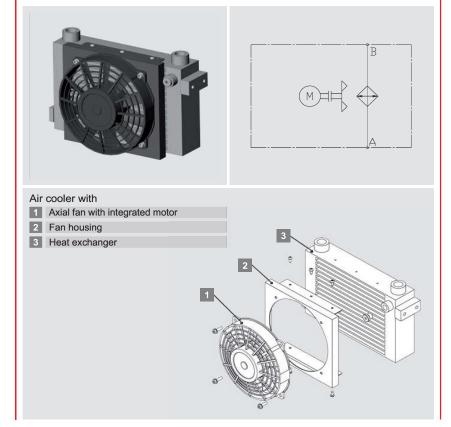
- Mobile cranes
- Concrete mixers and pump trucks
- Road paving machines
- Construction machines (excavators, wheel loaders)
- Agricultural machines
- Municipal machines

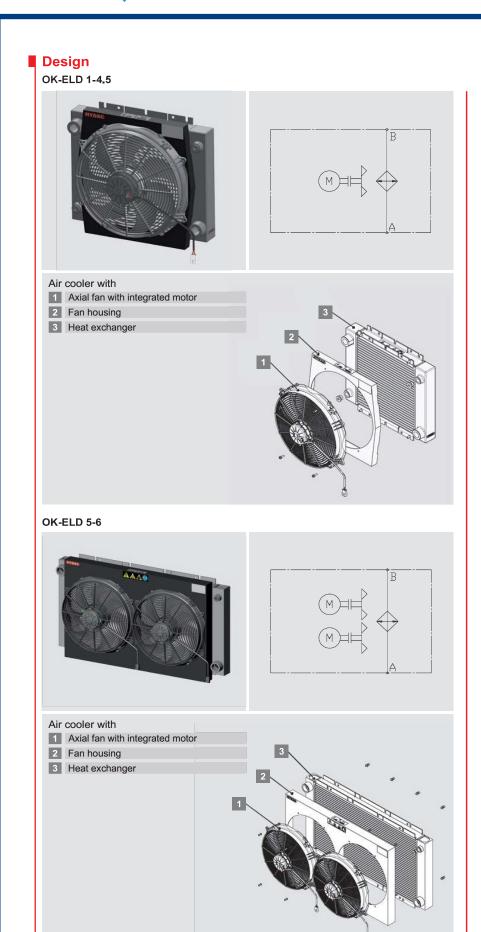
Operation Data

Fluids	 Oils (mineral oils, synthetic oils, high viscosity oils, biological oils, phosphate ester) Water-glycol (cooling fluids) HFC pressure fluids 						
Viscosity	2,000 mm²/s (standard)						
Temperature range	Minimum / maximum ambient temperature: -20 °C to +40 °C (standard) Minimum / maximum temperature of the medium: +20 °C to +130 °C Please contact the technical sales department in the event of deviating temperatures. Notice! Fan at max. speed (max. volume of air) must be avoided when operating a cooler at which the temperature difference between the medium inlet at the cooler and the ambient temperature can be greater than 50°C. Quick changes in the temperature of the cooling element material can lead to a significant reduction in service life or to direct damage of the cooling element due to thermal shock. Please contact the technical sales department to receive information about controlled fan drives.						
Pressure resistance of the cooling element	Dynamic operating pressure: 16 barStatic operating pressure: 21 bar						
Fan	Axial fan in suction version (standard) Axial fan in pushing version on request (note: approx. 10 % less cooling capacity)						
Motor	DC motor 12 V / 24 V Protection class IP68 Insulation class F Other versions on request.						
Noise levels	See technical data The noise levels are only reference values as the acoustic properties of a room, connections and reflection have an effect on the noise level.						
Accessories	 Integrated pressure bypass valve (IBP) or integrated thermal pressure bypass valve (IBT) (cannot be retrofitted, also see options) Brushless fan Electronic speed control (ESC) Thermostats Air filter grid or air filter mat Vibration damper 						


Options

Integrated pressure bypass valve (IBP) / Integrated thermal pressure bypass valve (IBT)


The bypass channel is integrated in the cooling element. If a particular pressure is exceeded, the IBP opens the bypass channel, thereby protecting the cooling element from too high a pressure. Furthermore, the IBT only opens the cooling element path once a particular temperature has been reached.



OK-ELD 0

OK-ELD 1.5

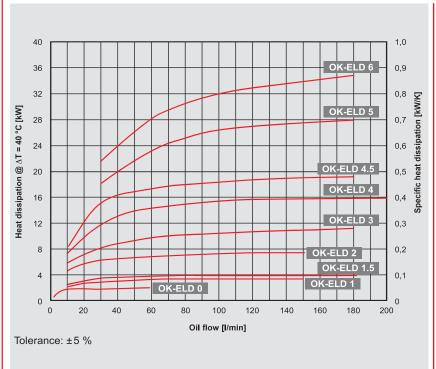
E 5 805 3/08 16

Technical Data

OK-ELD 0-6

OK-ETD 0 316381 15 60 520 0.02 3.0 2.0 140	Noise level (at 1 m distance)	€ [i] Nolume [i] 0.4	Weight [kg] 4)
OK-ELD 0 3109901 12 00 279 0.05 3.0 3.0 140		1 0.4 1	2.7
OV 51 D 0 0400000 04 00 070 0.05 140 50 140	00		
OK-ELD 0 3169980 24 60 279 0.05 1.6 5.0 140	68	0.4	2.7
OK-ELD 1 3083371 12 150 451 0.10 8.0 15.0 190	73	0.6	4.0
OK-ELD 1 3083596 24 150 451 0.10 3.2 7.5 190	73	0.6	4.0
OK-ELD 1.5 3106405 12 150 455 0.10 8.0 15.0 190	77	1.0	4.7
OK-ELD 1.5 3106406 24 150 455 0.10 4.0 7.5 190	77	1.0	4.7
OK-ELD 2 3083370 12 150 910 0.14 9.4 20.0 255	74	2.0	9.4
OK-ELD 2 3083597 24 150 910 0.14 5.2 15.0 255	74	2.0	9.4
OK-ELD 3 3083369 12 180 1,338 0.23 17.5 25.0 305	79	2.2	11.0
OK-ELD 3 3083678 24 180 1,338 0.23 8.0 20.0 305	79	2.2	11.0
OK-ELD 4 3809511 12 180 2,052 0.30 22.5 30.0 385	76	3.0	15.9
OK-ELD 4 3809078 24 180 2,052 0.30 10.5 20.0 385	76	3.0	15.9
OK-ELD 4.5 3979800 12 180 2,284 0.30 22.5 30.0 385	76	5.2	22.0
OK-ELD 4.5 3979801 24 180 2,284 0.30 10.5 20.0 385	76	5.2	22.0
OK-ELD 5 3083286 12 180 3,581 0.46 35.0 2x25 305	80	4.2	30.3
OK-ELD 5 3083681 24 180 3,581 0.46 16.0 2x20 305	80	4.2	30.3
OK-ELD 6 3982479 12 180 5,020 0.60 45.0 2x30 385	77	5.2	36.6
OK-ELD 6 3982420 24 180 5,020 0.60 21.0 2x20 385	77	5.2	36.6

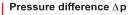
Counter connector

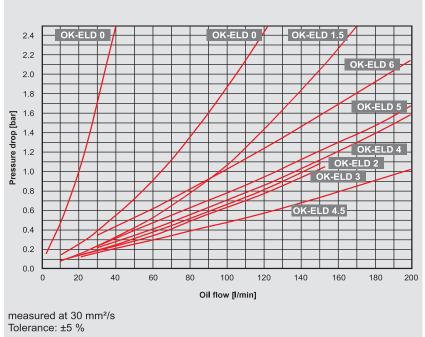

Type of	cooler	P/N							
OK-ELD 0	12 V	3973604							
OK-ELD 0	24 V	3973656							
OK-ELD 1	12 V / 24 V	3973602							
OK-ELD 1.5	12 V / 24 V	3973602							
OK-ELD 2	12 V / 24 V	3973602							
OK-ELD 3	12 V / 24 V	3176990							
OK-ELD 4	12 V / 24 V	3973602							
OK-ELD 4.5	12 V / 24 V	3973602							
OK-ELD 5	12 V / 24 V	(2x) 3176990							
OK-ELD 6	12 V / 24 V	(2x) 3973602							

Max. flow rate
 OK-ELD 5-6: each fan
 Fluid in cooling element
 Unfilled

■ Cooling Capacity and Pressure Difference ∆p

OK-ELD 0-6



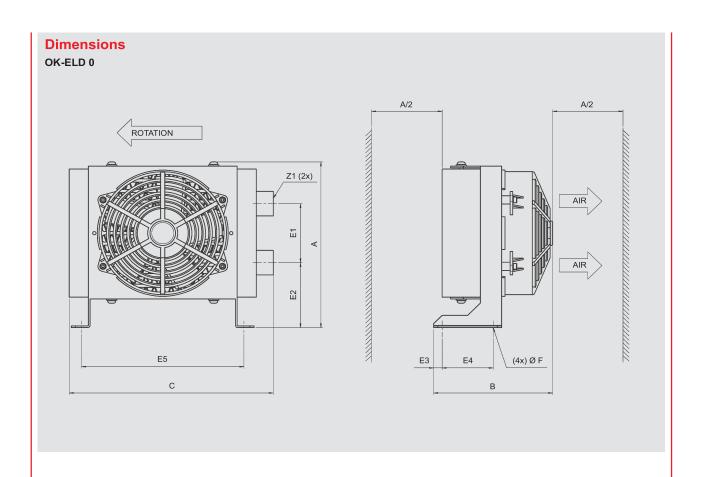

Cooling capacity:

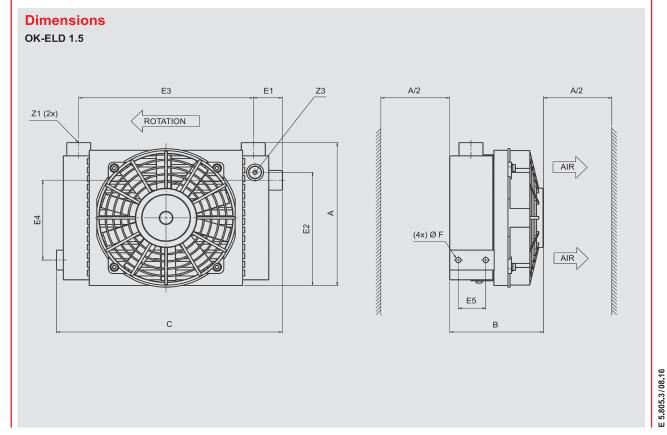
Dependent on the oil flow rate and the temperature difference ΔT between oil inlet and air inlet.

Note:

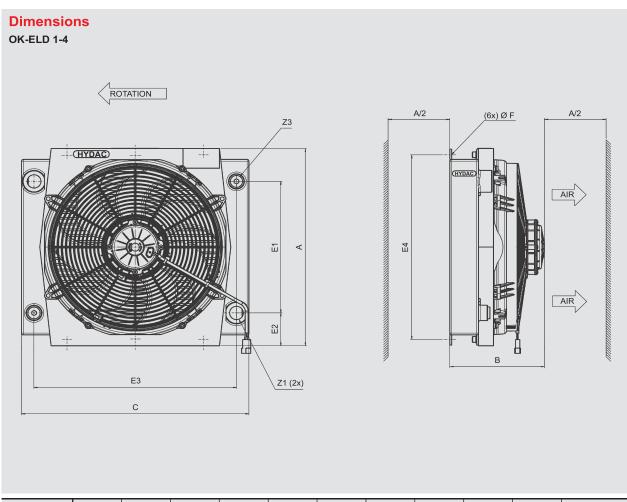
The values are measured at $\Delta T = 40$ °C. For smaller ΔT values, the values can change. You can also use our cooler calculation software for designing. Please contact our technical sales department.

For other viscosities, the pressure loss must be multiplied by the conversion factor K:

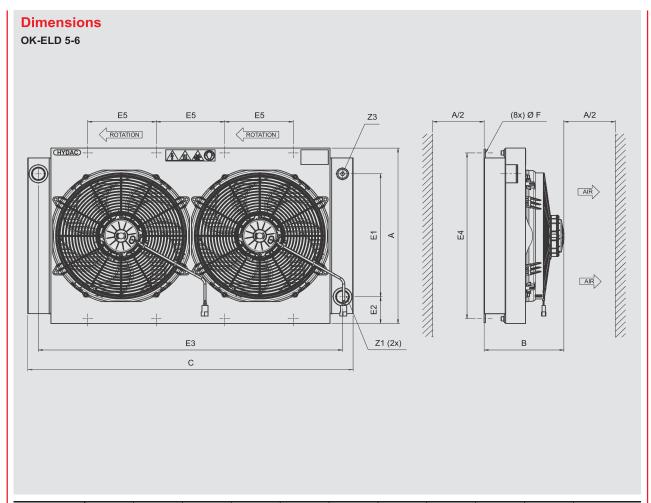

Viscosity (mm²/s)	10	15	22	30	46	68	100	150
Factor K	0.35	0.5	0.75	1.0	1.4	1.9	2.5	3.5


HYDAC | 119

Cooler type OK-ELD = Oil-Air cooler Site / Invotor speet O-6 = size H = 2 pl (3,000 min*) Revision Motor voitage 12 V = 12 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) Other colors on request. BF = Heat exchanger with integrated bypass valve BF = Heat exchanger with integrated thermo-typass valve BF = Heat cochanger with integrated thermo-typass valve BF = Electronic speed control For all possible accessories. If we with a speed control for a possible accessories for air coolers.		<u>OK-ELD</u> - <u>1H</u> - <u>3.1</u> - <u>12 VBL</u> - <u>1</u> - <u>S</u> - <u>AITF</u>
Size / motor speed 0-6 = size H = 2 pl (3,000 min ⁻¹) Revision Motor voltage 12 V = 12 V DC 24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	Cooler t	pe
0-6 = size H = 2 pl (3,000 min ⁻¹) Revision Motor voltage 12 V = 12 V DC 24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		
Motor voltage 12 V = 12 V DC 24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	0-6	= size
Motor voltage 12 V = 12 V DC 24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	H 	= 2 pl (3,000 min ⁻¹)
12 V = 12 V DC 24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		
24 V = 24 V DC 12 VBL = 12 V DC brushless 24 VBL = 24 V DC brushless Color 1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	12 V	= 12 V DC
24 VBL = 24 V DC brushless Color 1	24 V	= 24 V DC
1 = RAL 9005 (standard) Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		
Other colors on request. Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	Color –	
Air flow direction S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		
S = Suction (standard) D = Blowing Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		
Accessories IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	Air flow S	lirection — = Suction (standard)
IBP = Heat exchanger with integrated bypass valve IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,		= Blowing
IBT = Heat exchanger with integrated thermo-bypass valve AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	Access	ries —
AITF = Thermostat (fixed) ESC = Electronic speed control For all possible accessories, like vibration absorber, air filter grid or air filter mat,	IBT	= Heat exchanger with integrated thermo-bypass valve
For all possible accessories, like vibration absorber, air filter grid or air filter mat,	AITF	= Thermostat (fixed)
please refer to brochure Accessories for air coolers.	ESC For all n	= Electronic speed control scible accessories, like vibration absorber, air filter grid or air filter mat
	roi ali pi please ri	er to brochure Accessories for air coolers.
	piodoc i	of to should be reconstructed an essential.



HYDAC | 121



[mm]	A ±5	B ±10	C ±5	E1 ±5	E2 ±5	E3 ±5	E4 ±5	E5 ±2	F ø/slot	Z1	Z3
OK-ELD 0	202	140	240	72	79	10	60	190	6.5	G1/2"	_
OK-ELD 1	245	120	300	125	60	250	225	180 ¹)	9.0	M22x1.5	M22x1.5
OK-ELD 1.5	217	137	330	43	172	255	121	40	M8	M22x1.5	M14x1.5
OK-ELD 2	313	207	384	199	57	324	288	80	14x10	G1"	M22x1.5
OK-ELD 3	356	207	420	230	63	370	329	100	14x10	G1"	M22x1.5
OK-ELD 4	450	208	500	300	75	445	421	150	19x10	G1"	M22x1.5 ²⁾
OK-ELD 4.5	454	227	602	350	52	495	200	580 ¹⁾	12.0	G1-1/4"	M22x1.5 ²⁾

 $^{^{1)}}$ OK-ELD 1 and OK-ELD 4.5 have only the four external fixing points $^{2)}$ OK-ELD 4 and OK-ELD 4.5 have two connections M22x1.5

[mm]	A ±5	B ±10	C ±5	E1 ±5	E2 ±5	E3 ±5	E4 ±5	E5 ±2	F ø/slot	Z1	Z 3
OK-ELD 5	480	232	810	321	79	750	450	170	10x20	G1-1/4"	M22x1.5
OK-ELD 6	532	233	950	373	81	888	503	200	9x21	G1-1⁄4"	M22x1.5

We recommend maintaining a minimum distance to ensure an unimpeded air inlet and air outlet. This is half the height of the cooling element (A/2). Anything below the minimum distance can influence the cooling capacity and the noise emissions.